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ABSTRACT

\
Hydrographic surveys for nautical charting contain many

discrete data points., Analytical models for ocean bottom
topography could save computer storage and reduce the com-
plexitj of automating the nautical charting process, but
ther must meet stringent accuracy requirements. Polynomials,
double Fourier series, finite elements, Duchon's analysis,
Shepard's formula and Hardy's multiquadric analysis were
investigated as possible modeling technigues., IMultiguadric
analysis in which the surface is represented by an analyti-
cal summation of mathematical surfaces such as cones and
hyperboloids was the only method found to be suitable. in
iterative method of model point selection was found to zive
the best results., Smooth and unambigzuous junctions of
adjacent models were made by using a Hermite polynomial
weighted sum of overlapping areas., Highly irregular surfaces
can be represented by about 20% of the original survey data
points; more regular bottom topography can te represented

by a smaller percentage.
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I. INTRODUCTION

A. DBACKGROUND

The ocean bottom is a continuous but generally irregular
surface. In the deep oceans there are vast areas of abyssal
plains interrupted by mid-ocean ridges, sea mounts and con-
tinents., The coutinental shelves and coastal areas vary
from smooth flat bottoms to highly irregular surfaces with
deeply gouged glacial troughs or coral and rock pinnacles.
Many geological formations which are found on land such as
canyons, mountains, domes, faults, etc., are also found on
the continental shelves. The shape of the ocean bottom is
difficult to determine since it cannot be seen or photo-
graphed except in very shallow areas and, direct measurement
requiring occupation of the ocean bottom is costly and often
impossible.

There are many reasons for which the shape of the ocean
bottom must be known. Historically, safety of navigation
has been the most urgent reason, Nautical charts are con-
piled from many sources to aid the navigator. These charts
depict the coastlines and ocean bottom features using con-
tour lines and selected depths.

The primary sources of depth data for nautical charts
are hydrographic surveys. These surveys represent ocean

bottom topography by discrete data points which are defined
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by geographic position and depth below a specified water
level datum., Until the mid-twentieth century, these depths
were determined by lowering a weight on a calibrated line
until it touched bottom. The vessel position was usually
determined by measurements with sextants., Using these
manual methods, data acquisition was very slow and only a
minute percentage of the bottom was sampled. There were
many sources of error in the observational procedures. A
typical survey had a few hundred data points from which the
surface shape between points had to be inferred. Data pro-
cessing was easily handled by manual methods. More recently,
electronic positioning equipment and depth sounding instru-
ments have been used in semi-automated and automated systems.
These systems allow almost continuous sampling of the ocean
tottom along the vessel track. They have increased the
accuracy of the data and the completeness of bottom coverage.
As a result, depths need to ve inferred between vessel tracks
but not along the tracks., A typical survey of this type
contains between 2,000 and 20,000 data points. These sys-
tems increased the data acquisition rate to such an extent
that manual data processing methods could not keep up with
data acquisition., Computer aided systems for processing
and verifying the data were developed in the 1960's and
1970's.

Producing a nautical chart requires compilation of

many hydrographic surveys, shoreline manuscripts, and other

13
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documents. This remained a manual process until the mid
1970's. At this time, the National Ocean Survey (N0S) of
the United States National Oceanic and Atmospheric Adminis-
tration (NNOAA) began development of a computer assisted
chart compilation and production system (Moses and Passauer,
1979). This system requires on-line storage andjmanipu-
lation of large blocks of discrete point data from hydro-
graphic surveys. The density of these data from modern
surveys make this a complex and costly process.

In an effort to produce one hundred percent bottom
coverage for critical areas, multi-beam sounding systems
(Zopkins and Mobley, 1978), airborne laser depth measuring
systems (AVCO Everett Research Laboratory, 1978), and airborne
water penetrating photography systems (Eeller, 1976) have
been developed. Some of these systems have proved that one
hundred percent bottom coverage is feasible, They have
also created another provlem concerning representaticn of
the data and its use in the compilation of nautical charts.
The data from the multi-beam sounding systems for a typical
survey would be equivalent to several hundred thousand dis-
crete data points. Data from a laser system would be even
more dense., The photogrammetric method uses stereographic
images produced from aerial photographs, This can be con-
sidered to be truly continuous data, but such data is diffi-
cult to represent in a digital computer, The usual method
to represent this data is to select the most representative

and most critical depths for use as if they were from a

14
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conventional survey. For a bottom with little relief,
this method is satisfactory but as bottom relief increases,

considerable detail and completeness is lost.

B. MATHEMATICAL MODELS FOR OCEAN BOTTOM TOPOGRAPHY

The density of data from moderm hydrographic surveys
has made the automation of chart compilation difficult. A
possible solution to this problem which is investigated by
this thesis is the use of a surface defined by an analytical
expression to approximate the ocean bottom topography.

Such a mathematical model would be used to compute a depth
at any geographic position within the bounds of the model.
In order to be useful, such a model must require consi-
derably less data storage for the parameters which define
the model than was required by the original set of discrete
points,.

The accuracy of the model is of utmost importance. The
United States govermment can be held liable for vessel
groundings or accidents at sea which are due to inaccurate
charts. Special Publication 44 of the International Hydro-
graphic Bureau (1968) states the accuracy specifications
recommended for hydrographic surveys. The depth measure-

ment specifications are listed in Table I.

15

AR AP . e s




Table I - Depth Measurement Specifications
Recommended by the International Hydrographic Bureau

Depth Allowable error
0-20 meters (0-11l fathoms) 0.3 meters (1 foot)
20-100 meters (11-55 fathoms) 1.0 meters (0.5 fathoms)
Deeper than 100 meters 1% of depth

The Hydrographic Manual of the National Ocean Survey
(Umbach, 1976) adds that accuracies attained for all hydro-
graphic surveys conducted by the National Ocean Survey shall
equal or exceed the specifications recommended by the Inter-
national Hydrographic Bureau. These standards do not
necessarily apply directly to the accuracy requirements

for a mathematical model of the bottom, but they are good
reference figures.

Solution of the dense data problem for nautical charting
was the primary motivation for the investigation, but there
are other uses for models appraximating ocean bottom topo-
graphy. Many coastal processes are closely related to
tottom topography. These include wave height, wave refrac-
tion, energy dissipation, wave runup, storm surge and
beach erosion. Design of offshore structures requires
input of bottom characteristics. Subsurface, as well as
surface navigation, could be aided by an ocean bottom model
stored in an onboard computer. The accuracy requirements
and model scales for these applications would be different
but the modeling methods could be the same.

16
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C. SCOPE OF WORK

There are several ways to represent surfaces by mathe=-
matical expressions. Those that seemed most applicable
to the problem are discussed in Section II., Three of the
models were chosen for experimental analysis. Portions of
four hydrographic surveys conducted by the National Ocean
Survey were used as experimental data sets for this analysis.
These data sets represent a variation from extreme btottom
relief to a very flat bottom. The models developed for
these areas were analyzed quantitatively by comparing
observed survey depths and computed model depths at the szme
location. Gualitative comparisons of depth contours from
the two sources were also made., ZIFor each type of model,
the input parameters were varied to investigate minimum
requirements for a good representation,.

Determining the exact location of the shoreline and
other boundaries is an important part of any survey, but
including this in the models is beyond the scope of this
investigation. All the areas used for experimentation

were restricted so that they do not include shoreline.
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II. SURFACE MODELING METHODS

Analytical expressions have been used previously to
approximate topographic surfaces, Some techniques used in
map analysis are also applicable to the provlem and there
are some appealing methods which have been used for other
surface approximations but not for terrain models. None
of these methods have bteen used to represent hydrographic
surveys. Ocean vottom topography is often similar to land
topography but the research on terrain models has generally
teen for small scale large area maps, The large scale
hydrographic surveys which must represent detail on the
order of tenths of fathoms or feet are quite different than
those large area maps, so modeling techniques which are good
for small scale terrzin models may not be appropriate for
nydrographic survey modeling., Some important properties of
the methods which must be considered aside from accuracy are:

e case of computation - Must a lzrge system of equations

be solved to develop the model?

e dependence of horizontal scale - Hydrographic surveys
and marine charts of different scales often overlap or
are adjacent., TFor this reason, it is not good if the
accuracy of a modeling method varies with horizontal
distance scale.

e global versus local models - A global model represents

a large area with a single expression. A local modeling

18
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method represents many adjacent small areas with

many corresponding expressions, Generally, there

is more computation involved in global methods, whereas,
local modeling requires more data searching to find

the appropriate local parameters., Global models

which attain significant data storage savings are of
particular interest in this study.

e interpolation versus approximation - Interpolation
methods generate a surface which fits some data points
exactly and is used to interpolate between those points
for surface values at other positions., Approximation
methods generate 2z surface which approximates all the
data but may not fit any data points exactly. 4 "best
fit" by some criteria such as least squares is usually
used. Approximation methods may not represent the
least depth in an area zaccurately or they may move the
position of peaks and deeps significantly. It is impera-
tive that the model can be controlled to represent criti-
cal data points exactly. Interpolation methods are thus
more appropriate for this application, The data points
which are selected for interpolation will be called
model points in this ﬁresentation. Quite often they
are significant data poir s such as a least depth or
an area of slope change.

The following sections discuss methods and previous

research which are applicable to the problem.

19
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A, POLYNOMIALS

Czegledy (1977), Hardy (1971), Krumbein (1966), and
vhitten (1970), discuss the use of polynomials for surface
representation, A polynomial mapping equation of two inde-
pendent variables with a specified degree can bte produced
which fits a few data points exactly or approximates all
the data in a least squares sense. In either case, the sys-
tem of equations which must be solved vecomes ill-conditioned
as the degree of the polynomial increases. This can be
alleviated by using orthogonal polynomials., In the method
of orthogonal polynomials, a2 collocated series of inde-
pendent surfaces, linear, quadratic, cubic, etec., is generated.
The summation of these surfaces is the mapping equation which
defines the model. Increasing detail is gained by solving
for and adding the surface of next higher order. This method
has proven useful for trend analysis of maps., However, it
has been rejected by some investigators for applications
requiring more accuracy. The reason as stated by Hardy (1971)
is that the "ordinary collocated polynomial series is
unmanageable in representing the sometimes rapid and sharp
variations of real topographic surfaces." Requiring a high
degree polynomial to fit closely spaced irregular surface
paims in one area causes significant invalid variations in
other areas., To avoid these problems, low degree poly-
nomials have been used in a2 local approximation mode with

success, but this does not produce a global surface model.

20
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B. DOUBLE FOURIER SERIES

The double Fourier series model is discussed by James
(1966) and Krumbein (1966). It is produced by a series of
independent harmonic surfaces having wave forms of diminishing
wave length as the order of the surface increases. This
technique has proven valuable for trend analysis particularly
wnen the surface features show oscillating patterms. Unfor-
tunately, the models require high order surfaces to repre-
sent sharp terrain features. Such surfaces produce oscillations
with large variations tetween data points and have many of

the same drawbacks as the collocated polynomial series,

Gold, Charters and Ramsden (1976) discuss a method of
surface representation in which a system of trizngles with
data points at the vertices is imposed on a2 surface. An
interpolating function is used to estimate the surface in
each triangular element. The interpolant is developed so
that the surface passes through the vertices and makes a
smooth transition from one triangle to the next.

Peucker, Fowler, Little and Mark (1977) have developed
a2 similar system of surface representation by Triangulated
Irregular Networks (TIN). Rather than a smooth interpolant,
the TIN system uses the planes defined by the three function
values at the vertices of each triangle to represent the

surface. Considerable work has been done on automated

21
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techniques for selecting appropriate points to be used

for vertices and on development of data structures for
storage of the vertices, neighboring points, and neigh-
boring triangles. The TIN system was developed specifically
for digital representation of topographic surfaces,

Finite element systems such as these are local methods.
Detail can be easily incorporated into the model by adding
points where required without affecting the model elsewhere,
Very little computation is required but searching the data
structure to find the appropriate element is necessary.

Such systems are generally independent of scale unless a
scale dependent interpolant is used. A single expression
which represents the surface is not generated ty these

methods.

Shepard's method as described by Poeppelmeier (1975),
Barnhill (1977) and Franke (1979), has been widely used to
interpolate random data but nhas never been used for topo-
graphic surface representation. The model is produced
by taking a weighted average of the model points to inter=-
polate the surface value at other points.

Shepard's formula is expressed by

Lows, if d; # O for all i
Z'wi
f = (1)
fi - & 4 di = QO for any 1
22
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where the fi are the depths at the model points; d; is the
distance from the ith model point to the point of computa-
tion; and the weight assigned to each model point, Wiy is
a function of %I. Two such weighting functions used in
this project were simply the inverse distance (l/di) and
the inverse distance squared (l/diz).

In this method, all model points contribute to the
value of f, but the effect of any model point on the inter-
polant decreases as the distance from that point increases,
Another appealing feature of this method is that the value
of £ will always be between the minimum and maximum values
of the model points.

Franke and Little's modification to Shepard's method
restricts the weighted summation to only those model points
within a radius R of the computation point. With this modifi-
cation, the weighting function approaches zero a2s the dis-
tance approaches R and remains zero a2t distances greater th

R. The modified Shepard's formula is expressed by

o

- i l
i for all
7 o= vo if 4y # 0 for all i
\\ fi h g di = O for any 1
or 2
i pzd 2 )
g it di # 0 for all i
Z
Z (R-di)'f
f = e * (3)
fi if di = 0 for any 1

23
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where

R—di for di < R

(R-q,), = (4)
s 0 ford; 2R

The weighting functions l/di and (R-di)+ produce surfaces

pas

|

with cusps at the model points. The weighting functions

2
l/d% and (R'di)+ produce surfaces with flat spots at those
R%4

i

points. For higher order functions of l/di these flat spots

increase in size and the slopes between them become steeper,

These properties are shown in two dimensions in Figure 1.

24
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Figure 1 - Shepard's Formula with Various
Weighting Functions
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These formulas do not require solution of systems of equa-
tions and are easily modified by simply adding significant
data points without recomputing any coefficients. They are
independent of scaling, global in nature, and the computa-

tion is very simple.

E., DUCHON'S METHOD

The method of Duchon (1976) which was developed as thin
plate surface theory is described by lMeinguet (1979) and
Harder and Desmarais (1972). It has never been used for
topographic surfaces but has been used for other surface
analyses. To develop this model, individual surfaces called
basis or kernel functions, which are centered at the model
points, are summed to yield a gloval surface. There is a
coefficient associated with each kernel function which
determines the magnitude of the effect of that kernel func-
tion on the total surface.

The expression for the model is
n

where n is the number of basis functions and model points
used, The last three terms represent a plane which is also
added into the model., The n+3 coefficients Ci’ Inly ousp By
Al, A2 and A3 are determined by solving the following system

of n+3 equations.
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]
] .
I—‘Mp

& [§(Xl, o Yi}) + A+ MK+ AgT)

n
f,= 35 O [}(Xn’ Tps X4 Yi?] A+ K+ AST)
T
9 = 45 9 L5}
n
0O = ks ClKl
:
- xr
Q = i=1 Cl 5L

where fl, f2’ —-—, fn are the surface values at the model

Duchon used two basis functions

FAE To Xgo Yy oo g3
Al
and (7)
F(X, ¥, Xy, Y4y = d;2 log dy
where
a i 2 2y % (8)
dy =((x-%,)% + (Y - ¥)?) %,

di is the horizontal distance from each model point to the
point of computation.

Duchon's method using the above basis functions is
independent of scale. During experimentation, a third basis
function

F(X, ¥, X, ¥;,) = d; log d, (9)

was also used. The models using this latter basis function

are dependent on scale.
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F. HARDY'S MULTIQUADRIC ANALYSIS

Multiquadric analysis, as discussed by Hardy (1971,
1972a, 1972b, 1975 and 1977) resulted from a search for a
satisfactory and efficient method to represent topography
by an analytical model., As suggested by its name, the
method consists of summing many quadric surfaces (cones,
hyperboloids, paraboloids, etc,), each associated with a
model point, to obtain a global surface. Superficially,
this method is similar to Duchon's method except that the
kernel functions are quadric surfaces and the additioanl
three terms are not used. The expression for this model

is
n
t-7 THo e Yii] (10)

where f is the surface value at the point (X, Y); Q is the
quadric surface or kernel function; (Xi, Yi), i=zl, ===, n
are the model points at which the kernels are centered;
and Ci’ i=zl, ===, n are coefficients assigned to each sur-
face.

The following system of equations is used to solve for

the unknown coefficients.

n
SN T CRC TR Yi;]

(11)

[otxy 1 . Yii}

H

P.

" MB
Q
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Theresulting surface will fit the data exactly at the model
points (Xi’ Y, fi), izl, ===, n,
Hardy (1971) found that the quadrics which yield the
best reults are hyperboloids, cones and inverse hyperboloids.,
A hyperboloid is represented by
g 4% T e 1) = ML 0 5 (11,00 4 5HE,  (32)
Cones are special cases of hyperboloids where 5 i8 zero:
1
AL, T, %, T,) = ((X-X)% 4 (-1)3)% = q,.  (23)
d; is the distance from the point of computation (X, ¥} to

the center point of the each quadric surface (Ki, Yi).
Inverse hyperboloid kernels are expressed by:
Q4T T. B ) = (RS« T2« §5YR )

The magnitude of the coefficient Ci determines the steepness
of the cone or hyperboloid. The sign of Ci determines
whether the surface is oriented upward or downward. The
magnitude of 5 determines how flat the hyperboloid is at

its center. These properties are shown in Figure 2.
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Hyperboloid Xernels

Figure 2
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For an inverse hyperboloid 6 determines the peakedness of
the surface at its center point (Figure 3). C; simply
represents a multiplicative constant which scales the size
of the surface and specifies its orientation upward or

dowvnward.

L
i

b1

izure 3 - Inverse Hyperboloid Xermels

For all Ci and 5 the inverse hyperboloid approaches zero
as the distance increases, There is an inflection point
at d = fyfzt
The way several quadric surfaces sum to form the global

surface can be seen in two dimensions in Figure 4.
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Pigure 4 - Quadric Summations (hypertoloid kernels)

Multiquadric modeling is independent of horizontal
scaling so long aSCSis linearly related to the horizontal

distance scales.
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III. HYDROGRAPHIC SURVEYS

The data used in this project were from hydrographic
surveys conducted in the late 1970's by the National Ocean
Survey. The methods and procedures used were typical auto-
mated survey procedures as documented by Umbach (1976) and
Wallace (1971). A brief description of these procedures
followed by more specific information on each data set

follows.

A. GENERAL DESCRIPTION

Safety of navigation is the primary purpose for which
hydrographic surveys are accomplished., The data is acquired
by running sounding vessels in parallel or nearly parallel
tracklines on the ocean surface and taking depth measure-
ments along these lines at evely spaced intervals, Cross-
lines are run at large angles to the main system of lines
as a gross check on the validity of the data. When indica-
tions of critical bottom detail are found, development lines
are run at closer spacing to determine the least depth and
verify the nature of the feature. The depths are plotted
on a survey sheet, a sample of which is shown in Figure 5.

There are many properties of a survey which affect its
usefulness., Those most important to this project are survey

scale, horizontal positioning accuracy and depth accuracy.
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Figure 5 - Portion of a Hydrographic Survey Sheet




1. Survey Scale

The survey scale is the ratio of distance on the
survey sheet to the corresponding distance on the earth,
The scale chosen for a survey depends on "the area to be
covered and the amount of detail necessary to depict ade-
quately the bottom topography and portray the least depths
over critical features." (Umbach, 1976) The survey scale
is usually at least twice as large as the scale of any
chart published for the area. Large scale surveys cover
less area than small sczle surveys but greater detail can
be represented. For this reason, large scale surveys are
conducted in harbors, anchorages, restricted navigable
waterways, and areas where dangers to navigation are
numerous. Areas with considerable detail are the most
difficult to adequately represent by a mathematical expres-
sion. Three of the four data sets used in this project

were from large scale surveys.

2. Horizontal Position Accuracy

Umbach (1976) specifies that plotted positions,
"whether observed by visual or electronic methods, combined
with plotting error shall seldom exceed 1.5 mm (0.05 in,)
at the scale of the survey." On a 1:5000 scale survey,
the position of each sounding should thus be represented
to within 7.5 meters of its actual position on the earth,
This is important in evaluating a mathematical model. One

of the data sets had some very steep slopes, where an error
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of a few meters in positioning would produce a depth
variation of several fathoms. For areas such as these, a
much greater depth discrepancy btetween the model and the

survey data should be tolerable.

3., Depth Accuracy

As seen in Figure 6, there are many components
that make up the depths represented in a hydrographic
survey. In addition to the depth recorded by the sounding
instrument, there are corrections for velocity of sound in
the water column, the stage of the tide, and the dynamic
vessel draft. Sometimes surveys have slight inconsistencies
where data from two different vessels or two different days
are adjacent or intermixed. These might be due to changes
in the water column structure that affect the velocity of
sound, an error in determining offshore tide corrections
from tide gages near the shore, unrecorded changes in vessel
speed affecting the dynamic vessel draft, a slight systematic
error in vessel positioning, etc. Even more critical is
the effect of waves on the sounding vessel, Small vessels
change vertical position rapidly as waves pass while the
instruments record the depth of the water column btelow the
vessel, This depth is too great if the vessel is on a2
wave crest and too small if the vessel is in a trough. The
angular orientation of the vessel is also affected by waves.
If the vessel rolls to an angle greater than the sounding

beam width, the depth recorded may not be under the vessel




Water surface

Actual depth

Q
Tide or water

'Dynamic draft

|
Transduce f A

Chart depth

und

level reduction / correction
Y
Datum of
reference
¥ =
0
Q.
N Q
- <
Q.
(7] =y Q
D S .E
- b e
[+F] Q
> [¢3] ©
} S Q
s3] ~ (7]
[%2] (=] .
£ o <
< —
- [F¥]
=
[«3)]
£
3
S
-
w
o
—
'c
Velocity of sq
Bottom correction
———

e |

Figure 6 - Components of a Depth lMeasurement

N
-3




but off to the side. In order to correct for this, the
echograms were manually scanned, wave action was visually
meaned out of the record, and depths that were automatically
acquired with an error greater than the recording interval
were rerecorded. On days of moderate to heavy wave action,
this procedure leads to an inordinate amount of manual

work introduced into an otherwise automated system, Table II
indicates the depth recording and correction intervals used
by N0S. Note that in many cases soundings from 0~-20 fathoms
need only be recorded to the nearest whole foot or nearest
half of a fathom.

Although depth measurement errors can exist on all
surveys, they are more apparent in areas of flat regular
bottom. If two adjacent soundings each have nearly a Icot
of error of opposite sign, this will appear as a sharp dis-
continuity on a flat bottom whereas it will hardly be
noticed on a steep slope. For this reason, models for
areas of flat regular terrain when compared with the survey
data may show some relatively large differences due to the

data acquisition procedures.

B, DATA SETS

Four data sets were used for analysis in this project,
They were specifically selected for the variety of bottom

topography which they represent,
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1., Monterey Bay, California

This data set was taken from survey registry number
H~9808, It was conducted in 1979 by NOAA Ship DAVIDSON and
Naval Postgraduate School personnel: and equipment., It
covers the southernmost part of Monterey Bay including
Monterey Harbor. The survey was conducted at a scale of
1:5000. Only one vessel was used on the portion of the
survey chosen for analysis. The sounding units are fathoms
and depths range from O to 16 fathoms, The bottom has a
large amount of detail. It slopes moderately downward from
the shore and consists generally of mud and sand. In the
middle there is an area thick with kelp which is attached
to a rocky irregular bottom. There are-a few rocky areas
in the deeper part as well., TFigure 7 shows the bottom con-
tours in one fathom increments. The scale of the plot has

been reduced for presentation herein,

2. Morro Bay, Califormnia

This data set was taken from survey registry number
H-9737. It was conducted in 1978 by the NOAA Ship FAIRWEATHEER,
It covers a small part of Morro Bay and some navigable water-
ways open to the bay. The survey was conducted at a scale
of 1:5000. The sounding units are feet and depths range from
16 to 82 feet in the portion used for analysis. TFigure 8
(reduced scale) shows the bottom contours in three foot incre=-
ments, There is one major feature near the center and con-
siderable irregularity in the northeast cormer of the area.

Otherwise, the bottom slopes gently offshore.
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Figure 7 - lonterey Bay Data Set Contours (fathdms)
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3. Auke Bay, Alaska

This data set came from a thesis project by Seidel
(1979), a student at the Naval Postgraduate School, which
investigated the affects of using multiple sounding beam
widths «for hydrographic surveys. The procedures were some-
what non-standard since sounding lines were run much closer
than normal in an attempt to gain 100% bottom coverage.
Specifications for 1:5000 scale surveys were used but due
td the dense sounding spacing, it was plotted at a scale
of 1:2500. The data was incorporated into survey registry
number HE-9818, It was conducted in 1979 by Seidel and the
NOAA Ship RANIER., It covers a small portion of Auke Bay in
southeast Alaska. The sounding units are fathoms and depths
range from O to 24 fathoms., The bottom is mostly mud and
rock and shows a tremendous amount of variation due to
glacial action., Very steep slopes are encountered in the
area., At one point, the depth changes from 7 to 22 fathoms
in 2 horizontal position change of only 30 meters. Figure 9
(reduced scale) shows the bottom contours of the central

part of the data set in one fathom increments.

4. Gulf Coast
The fourth data set was taken from survey registry

number H-9785, It was conducted in 1978 by the NOAA Ship
MT MITCHELL at a scale of 1:20000 and covers an area in the
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Gulf of Mexico off the coast of Louisiana. The sounding
units are feet and depths range from 29 to 37 feet in the
portion used for analysis. Figure 10 (reduced scale) shows
the bottom contours in one foot increments, The bottom is
generally flat with a very gentle slope. It consists
mostly of mud and shell fragments. Some of the irregulari-
ties seen in the bottom contours are in areaswhere the work
of two vessels overlapped because of crosslines or junctions,
The flat bottom and small contour increment make these
irregularities stand out. The survey party reported that
wave action was also a considerable provlem during the con-

duct of this survey.
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Figure 10 = Gulf Coast Data Set Contours (fzet)
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IV, RESEARCH PROCEDURES

A, COMPUTER SYSTEM

All the computer work for this project was done on
the IBM 360/67 system at the Naval Postgraduate School's
W. R. Church Computer Center. All programs were written
in FORTRAN IV. The VERSATEC-07 electrostatic plotter was
used for all the data and contour plotting., Both IMSL
(International Mathematical and Statistical Library)
routines and other library routines were used in the pro-

grams.,

B. DATA SET PREPARATION

l. Original Data Condition

All four data sets were supplied by the National
Ocean Survey on non-labeled unblocked magnetic tapes in the
N0S standard record format, DPositions of all soundings were
given in terms of latitude and longitude. Corrected soundings
were supplied to the nearest tenth of feet or fathoms, ZEach
data point had a record sequence number assigned. The NOS
format also included original observed data and all correc-
tions to it as well as descriptive cartographic codes and

other information.
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2. DProgram TAPCNV - Tape Conversion

Only corrected position, corrected depth and
record number identification were required for this pro-
ject. The program TAPCIV was written to read this data
from the non-labeled NINOS tapes. The geodetic positions
were converted to an X-Y plane coordinate system based on
the Modified Transverse Mercator (MTM) projection (Wallace,
1971). Double precision computatiocns were used for this
conversion., The MTM projection gives the positions in
terms of meters of northing and meters of easting from
a local origin., This X, Y position was then converted to
plotter coordinates in terms of inches from the plotter
origin. The record number, depth, geodetic position,
MTM coordinates and plotter coordinates were blocked and
recorded on disk and on an NPS tape with standard system

labels.

3. Program DATPLT -~ Data Plotting

This program was written to display the discrete
point data on a plotted sheet. Latitude and longitude
grid intersections at specified intervals were converted
to plotter coordinztes and straight lines were drawn con-
necting these points to provide the geodetic position
reference system. Two sheets were plotted with this
reference grid. On one sheet depths were plotted to the
nearest tenth., (NOS plots tenths only in shallow water

when the depth units are fathoms) Record numbers were




plotted on the second sheet., Overlaying the two sheets
facilitated reference to any particular data point. DATPLT
was used to plot the entire surveys as a first step. Vhen
portions of the surveys were selected for analysis DATPLT
was used again to select and plot only the data within

the specified area.

4, Program CONDAT - Data Contouring

Part of the data analysis consisted of comparing
contours of the original data with contours from the model.
Initially, contours of the survey data were hand drawn - a
procedure that is somewhat sutjective. In order to remove
as much subjectivity as possible from the analysis hand
contouring was replaced by machine contouring. The library
routine CON'ISD, for contouring irregularly spaced data, was
used in the program CONDAT., This routine first generates
triangles with data points at the vertices. 3By linearly
interpolating along the triangle sides for the contour
values, points on each contour are found and connected to
generate the contour lines. The contours generated in this
manner were not smooth as would be desirable, but the data

points were dense enough so that this was not a problem.

C. MODEL DEVELOPMENT AND ANALYSIS

Program MODEL was written to do the model development,

the quantitative analysis, and to aid in the qualitative
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analysis. To change from one modeling technique to another
the only modification necessary was the replacement of one
module., That module contained the routine to develop the
model by a given method and to compute the depth at any
point. All the modeling techniques required the selection
and use of model points from the survey data. The model
points were specified by record numbers on punched card
input and the survey data was read from disk and stored in
memory. The model points were stored in arrays for model

development.

1., Coefficient Computation - Subroutine LEQ2S

The methods of Hardy and Duchon require solution
of symmetric systems of linear equations to determine the
model coefficients. The double precision version of the
IMSL routine LEQ2S was used for this purpose. This routine
uses symmetric decomposition with iterative improvement
to solve the systems. Systems of up to 226 equations in
226 unknowns were solved during the course of this project.
The model coefficients and respective model points were

output for analysis.

2. Cuantitative Analysis - Subroutine STAT

Subroutine STAT was developed to provide a guanti-
tative analysis of each model. ZZach survey depth was com=-
pared with the depth computed from the model at the same
X, Y position. The root mean square difference, maximum

positive difference and maximum negative difference were
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tabulated for each run. A positive difference signified
that the model depth was deeper than the survey depth; a
negative difference signified that the survey depth was

deeper. The root mean square difference is given by the

expression

g

¥ (m-sp)?

RMS difference = i= (15)
N

where D is the model depth, SD is the survey depth, and
N is the number of points used for the comparison., Those
points with a2 difference greater than 1.5 times the RMS

d ifference were listed for manual inspection and arnzlysis.

3. Qualitative Analysis = Subroutines SETCON and CONTUR

The qualitative analysis was accomplished by compari-
son of model contours with those from the original data.
In order to produce the model contours subroutine SETCCN
developed 2 quarter inch grid over the modeled area at the
scale of the survey. The model depth was computed at each
grid intersection. These depths and positions were passed
to the library routine CONTUR for contouring. CONTUR is
similar to CONISD except that it was written specifically

for gridded data and runs considerably faster than CONISD.,
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V. RESEARCH RESULTS

A, SELECTION OF METHODS FOR EXPERIMENTATION

Of the modeling techniques discussed in Section II,
Duchon's method, Shepard's formula and Hardy's multiquadric
analysis were selected for testing. Neither Duchon's method
nor Shepard's formula had previously been used for terrain
surfaces, Multiquadric analysis had been used with good
results for topographic data but not at the scales and
accuracy requirements necessary for hydrographic survey
representation.

The methods of polynomials and double Fourier series
were not tested. They had proved to te useful for some
applications such as trend analysis and representation of
repeated features. The fact that forcing polynomials or
double Fourier series to fit irregular data in small arezs
produces unwanted irregularity in other areas would seen
to preclude these methods from producing good results in
this application. Some methods reduce this effect by using
local expressions which fit only small areas at a time, but
this defeats the purpose of generating a global model %o

represent large areas of the data.

Finite element methods were not tested., They are strictly

local methods which, in addition to storage of model points,
require storage of pointers to the neighboring points and

neighboring triangles of each model point.
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B. METHOD COMPARISON PROCEDURES

The Monterey Bay and Morro Bay data sets were used for
comparison of the methods. The lonterey Bay data set was
used in the qualitative manner only. The Morro Bay data
set was used for both qualitative and quantitative compari-
son. The procedures described below were used for all methods
in order to make controlled comparisons.

As a first step, 42 data points on a2 6x7 grid were chosen
from the lonterey 2Bay data at regular spacing without regard
to bottom detail. After the models were generated with these
points, an adcitional 18 model points were selected in areas
where more det-il was required. Ilodels were then generated
using the 60 points. The third step was to choose 30 more
points around the outside of the original area at the same
spacing as the original 42 points extending the grid to 8x9.
lodels were generated with the 90 points to determine the
affect of extending the model area.

Thirty-seven model points were chosen at regular spacing
from the Morro Bay data set in the first step with that
data., Thirty and thirty-one additional points were selected
in the second and third steps for totals of 67 and 98 model
points., The additional points were all within the original
area in places where additional detail or accuracy was needed,
The effect of increasing the model point density was examined
in this way. The statistical results, as well as contours

of the Morro Z2ay tests, were compared.
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C. RESULTS OF DUCHON'S METHOD

Equation 5 shows that Duchon's model is produced by the
summation of a plane and a series of basis functions centered
at the model points. Duchon's method with the basis functions
d3 and d2 logd and a similar method with basis function d logd

were tested.

1. General Findings

For all three basis functions the 42 lonterey Bay
points produced similar models which showed the general
trend of the bottom but very little detail. Using the 60
model points, the basis functions d3 and d2 logd gave more
detail and a fair representation of the bottom trends.

See Figure 11,

The basis function d logd gave a2 very poor repre-
sentation of the bottom when the 60 points were used. In
an effort to resclve detail in some areas, several points
were chosen very near each other, This caused steep slopes
to be generated which extended into areas where there were
no model points and created invalid pezaks and deeps.

The quantitative results of Duchon's method using
the lMorro Bay data set are given in Table III. 1lote that
the model using the basis function d logd became better in
both RIMS difference and maximum difference as the number
of points was increased., The results didn't change much
using the basis function d2 logd and they became worse for

the basis function d3. The contours reflected these

54




12

1

Pigure 11 - 60 Point Duchon lodel of Monterey Bay
(vasis function d2 log d)
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statistics., In the cases of the d3 and d2

logd basis func-
tions, the detail was increased in the areas where points
were added but the statistical results did not improve due
to greater error in other areas, As shown in Figure 12,
the model using 98 points with the basis function 4 logd
compares very favorably with the original data contours in

Figure 8.
TABLE III - Results of Duchon's Method - Morro Bay

Nr of Maximum Maximum N of
Basis model RMS positive negative data

Function points difference difference difference points
a’ 37 1.20 3.89 -6.15 936
d%1ogd 37 1.14 3,78 -6.29 936
d logd 37 1.15 4.32 -6.51 936
a’ 67 1.77 6.74 -7.99 936
¢%1o0gd 67 1.1% 4.09 -4,42 936
d logd 67 0.77 3,11 -3.15 936
a’ 98 2.13 7.75 -17.83 936
d%logd 98 1.14 4.19 -6.15 936
d logd 98 0.67 2.23 -2.48 936

2. Dependence on Scale

The results of the previous section lead to a ques-=
tion concerning the ability of the basis function 4 logd to
produce a much better model than other basis functions in
one case but not in the other, The reason for this turned

out to be the scale of the data. The first two basis
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functions produce mocels which are independent of scale
whereas, the third produces models which are not, Initially,
the Morro Bay data was used at the earth's natural scale in
meters. At this scale, the system.of equations was ill-
conditioned to such a degree that it couldn't be solved.
The data presented in the previous section was acquired
with the horizontal position data scaled to a distance of
unity on a diagona2l from one corner of the area to the
opposite corner. In this case, the results were good.

The lMonterey Bay data was scaled for a diagonal distance

of 50. The results in this case were poor., Table IV gives
the results of some tests run at various scales using the
lorro Bay data and the basis functions d logd and dzlogd.
The set of 98 model points and 936 data comparison points

were used for these tests.
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TABLE IV - Effects of Scale on Duchon's Method -

Morro Bay
Basis function: d logd
Maximum Maximum
Diagonal RIS positive negative
distance difference difference difference
0.001 0.675 2,115 -2.365
0.01 0.672 2131 -2,379
0.1 0.668 21351 -2.406
1.0 0.671 2.216 -2.479
10.0 5.829 15.566 -20,285
100.0 17.394 65.291 -198.561
1000.0 0.T8L 22kl -2.461
Basis function: dzlogd
0.001 1,158 4,186 -6,149
0.01 1.157 4,185 -6.143
0.1 1:139 4.193 -6.155
1.0 1.158 4,189 -6.151
10.0 1.138 4,189 -6.151
100.0 1,138 4,189 -6,151
1000.0 1.138 4,190 -6,153
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D. RESULTS OF SHEPARD'S METHOD

As defined in equation 1, Shepard's formula is a
weighted summation of the model point depths. The weight
assigned to each model point is a function of the inverse
distance from the point of computation to the model point.
The weighting functlions used in this analysis were:

. 2

i
._1?
dj

-
(R"di)_,_

% de.z
i

where (R—di)+ is defined in equation 4.

1. Computation of R

In the modified Shepard's method, a radius of in-
fluence, R, is used. Rather than choosing this radius
arbitrarily, a method was used which related R to the den-
sity of the model points independent of the scale of the
data. This also allowed variation of R according to the
average number of model points which would fall within the
radius of influence.

The following expression was used for this purpose:

w - \(%) T a9
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where D is the maximum distance between any two model
points, N is the total number of model points, and NPPR
is the average number of points which should fall within
the radius of influence. (b/;>2 is related to the size

of the area which contains the data points., Dividing

this by N gives a measure of the average area which could
be assigned to each point., Multiplying by NPPR gives the
area which could be associated with that many data points.
Tzking the square root of this gives a radius which would
define that amount of area centered at the point of compu-
tation. On the average there should be NPPR model points
within a distance R from any point of evaluation. The
tabulated statistical results express the radius in terms

of NPPR instead of R.

2. Inverse Distance Weighting Function

Table V gives the statistical results of the tests
using the inverse distance weighting functions. The table
shows that use of the modified Shepard method improved the
results considerably. In all cases, the best results were
ottained by including an average of six model points in
the radius of influence. The table also indicates that no
statistical improvement was made by increasing from 37 to
938 model points.

The contours produced by this method (Figure 13)
for both data sets were poor. The basic trend of the bottom

can hardly be seen. The contours are quite wavy where they
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TARLE V - Shepard's Formula with Inverse
Distance Weighting Function - Morro Bay

Number Maximum Maximum Number

of model RMS positive negative of data

points NPPR difference difference difference points
37 6 2.06 8,17 -9.37 936
37 g 2.28 T332 -9.68 936
i All* 10.88 24.43 -25.96 936
67 4 2.45 8.50 -T7.97 936
67 6 2. 1T 5.69 -6.94 936
67 9 2:31 6.86 -7.61 936
67 25 3.53 9.61 -12,68 936
67 All* 11.41 22.77 -28,58 936
98 4 2.41 811 -8.,95 936
98 6 2,17 TPl -6.73 936
98 9 2.22 8.64 -7.51 936
98 a5 3.46 11.38 -12.51 936
98 56 5.03 13.33 -16.50 936
98 All* 12.50 21.33 -32.22 936

* GShepard's formula - All model points contributed to
the weighted average.
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Figure 13 - 98 Point Shepard's Formula Model cf Morro Zay
(NPPR = 6)
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should be straight. In some cases, peaks or deeps are pro-
duced at the positions of model points which aren't found

in the original data.

3, Inverse Distance Squared Weighting Function

Table VI gives the statistical results of similar
tests using the inverse distance squared weighting function.
There is considerably less variability as NPPR is changed
using this weighting function. The results are better for
large TPPR and for the unmodified version, but the best

results at smaller NPPR did not improve.

E. RESULTS OF HARDY'S MULTIQUADRIC ANALYSIS

As indicated in equation 10, Hardy's multiquadric model
is generated by summing quadric kernel surfaces, each of
which are centered at model points. Eypervoloids, cones

and inverse hyperboloids were the kernel surfaces tested.

1. Determination of 5

Both hyperboloids and inverse hyperboloids require
the parameter 6 (Section II.F). Variation of 5 makes
considerable difference in the results. The effect of
any value of 6 on the shape of the quadric surfaces with
respect to the entire model is related to the scale of .
the model. Hardy (1977) has indicated that the optimum

value of 5 in his investigations was also related to the

distance between model points., The following expression
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TABLE VI - Shepard's Formula with Inverse
Distance Squared Weighting Function -

Morro Bay

Number Maximum Maximum Number |
of model RMS positive negative of data 1
points NPPR difference difference difference points

b1 4 4 2.83 9.51 -8.90 936

2 2 2:37 8.75 -9.09 936 j

Y 25 2.36 8,38 =-9.57 936

o § All* 5.00 14,62 -17.06 936

67 4 2.81 9,14 -8.87 936

67 9 2.31 6.01 -6.88 936

67 <5 2.34 6.T1 -9.00 936

67 All%* 5.54 15.42 -19,90 936

98 4 2.58 9.33 -9.46 936

98 6 2eDD 153 -7.84 936

98 9 2.18 T.75 -7.05 936

98 25 2.26 9.56 -8,40 936

98 56 2,72 10,57 -11.66 936

98 All* 6.58 15.50 =22.48 936

#* Shepard's formula - All model points contributed to
the weighted average.
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was used to relate 5 to the average density of the model

points:
2

§ = 3 QN‘ x 0.1 x NPPR (17)
With this expression, the effect of 5 on models of
different scales will be similar as long as NPPR is the
same, The tables in the followiné sections are expressed
in terms of ITPPR instead of the absolute value of 5 5

A cone is a special case of hyperboloid where 6 is

zero, The tables for hyperboloid kermels include cones by
listing NPPR as zero. A zero value of () is not valid
for inverse hyperboloids since the peak of an inverse

hyperboloid increases to infinity as 5 approaches zero.

2. Inverse Hyperboloid Kermels

For both data sets when 5 was small (NPPR=5), the
contours showed holes at the model points which were not
indicated in the original data. The representation of the
actual surface was very poor. Increasing NPPR to 10, 15
and 20 gave somewhat better results and the bottom trends
were evident but the representation was still not good.
With NPPR greater than 20, very steep slopes were created
in large areas where no model points were chosen.

The statistical results using the lorro Bay data
set are given in Table VII. The results bec.me worse as
more model points were added. The best results were con=-
siderably poorer than the best results from other methods,

particularly the maximum differences.




TABLE VII - Multiquadric Analysis with

Inverse Hyperboloid Kernels - lorro Bay

lTumber Maximum Maximum NMumber

of model RMS positive negative of data

points TPPR difference difference difference points
37 10 2.05 4,82 -21,09 936
> 15 1.59 4,56 -14.73 936
37 20 1.43 4,24 -10.90 936
67 5 6.11 5.50 -32,06 936
67 10 2.54 11.68 -21.15 936
67 15 2.69 17.74 -15.71 936
67 20 4,09 20,16 -15.60 936
98 5 23.85 2.35 -60,04 936
98 10 FudD 9.92 -23.96 936
98 15 5.98 21,97 -20,13 936
98 20 8.23 6757 -33,72 936

67




3. Hvperboloid and Conic Kermels

Hyperbolic and conic kernels were evaluated on
both data sets and NPPR was varied from zero to 25 for
each set of model points., With 42 regularly spaced model
points on the Monterey Bay data set, not much detail was
evident but the general bottom trends were well represented
for all values of NPPR, Increasing to 60 model points
gave more variation with NPPR. For NPPR set to zera and
one the results were very good. See Figure 14, The
detail was improved and tk# bottom trends were still accu-
rate, For NPPR set to 10 and 20, the results became pro-
gressively worse. Very steep slopes were generated which
created invalid peaks and deeps in areas where no model
points were chosen. The reason for these slopes is apparent
when examining the magnitude of the coefficients. For
IITPPR=1, the mean coefficient magnitude was 0.33; for NPPR=20,
the mean coefficient magnitude was 151.63, ihen NPPR was
increased to 25, the system of equations became so ill-
conditioned that it could not be solved. This is due to
the increased flatness of the hyperboloids when NPPR becomes
large. In areas where several model points are very close
in order to represent sharp irregularities in the bottom,
the flat hyperboloids centered at those points can't produce
the detail required. Increasing to 90 model points produced
similar results.

The statistical results from the Morro Bay data set

are given in Table VIII. TFor small NPPR, the results became
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Figure 14 - 60 Point Multiquadric lModel of llonterey Bay
(hyperboloid kermels)
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TABLE VIII - Multiquadric Analysis with
Hyperboloid and Conic Kernels - Morro Bay

Number Maximum Maximum Number
of model RMS positive negative of data
points NPPR difference difference difference points

37 0] 1.18 8.37 -6.59 936
37 p 1.14 6.00 -6.76 936
37 10 1.18 3.97 -6.92 936
b 1 | 25 1.24 3.90 -6.17 936
67 0 0.75 e 61 -3.09 936
67 1 0.78 3.59 -3.01 936
67 10 2,10 15.41 -6.79 936
67 25 12.04 62.50 -44.,52 936
98 0 0.65 i.92 -2.14 936
98 1 0.68 2.06 -2.12 936
98 10 2.84 12 T2 -14.11 936
o8 20% 14.44 117.96 -43,61 936

* gystem couldn't be solved for NPPR=25




continually better as more points were added for greater
detail, As the model points became more dense, the best
results were acquired by using conic kernels (INNPPR=0),.
For the original 37 regularly spaced model points, the
best results were for small but non-zero NPPR, The con-
tour comparisons reflected the model quality demonstrated

by the statistics.

F., SUMMARY

A graphical comparison of the statistical results of
the methods is given in Figure 15. Duchon's method with

basis functions d3 and d2

logd gave only a fair representa-
tion of the bottom with regularly spaced model points.
Additional model points did not improve the results so
this technique was rejected. The basis function d logd,
was introduced which gave good results (comparable to the
multiquadric method) in one case and poor results in another.
This was due to a dependence on the horizontal scale of the
data, Independence of scaling for hydrographic survey
modeling is very important since surveys are plotted at
various scales. The method with basis function d logd is
unacceptable for this reason.

Shepard's formula gave best results in modified form
with about six model points in each radius of influence.

The inverse distance weighting function was better than

the square of the inverse distance. The results were
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considerably worse than those of Duchon's or Hardy's methods.
Improvement could not be gained by increasing the number of
model points, For these reasons, Shepard's method was
unacceptable.

Hardy's multiquadric analysis with inverse hyperboloids
gave very poor results., For small 6 holes were produced
at the model points and the depths between model points
were not accurate.

Of the methods tested, only multiquadric analysis with
conic or sharply pointed hyperboloid kernels gave results
which indicated that further tests were warranted. Depic-
tion of detail is improved by adding more model points with-
out adversely affecting the model in other areas and the

method is independent of linear scaling.




VI. FURTHER TESTING OF MULTIQUADRIC ANALYSIS
WITH CONIC AND HYPERBOLOID KERNELS

The results from the previous section showed that
multiquadric analysis with conic or sharply pointed hyper-
boloid kernels was the only method tested that could meet
the requirements of this application., Additional experi-
mentation was done to determine the best procedures for
selecting the model points and for joining models together
at the boundaries., Tests were also run to determine how
accurately the data sets could be represented with addi-
tional model points while still saving significant storage

space.

A. SELECTION OF MODEL POINTS

The selection of the data points to be used for the
modeling is a critical process in the development of the
multiquadric model. Three models for selection of the
points were tested using the Auke Bay, Alaska data set,
All point selection was done manually but consideration

was given to the difficulty in automating the process.

1. Regular Spacing Selection

In this method, data points from the survey were

chosen at nearly even spacing without regard to depth,
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bottom features, contour separation or any other factor.

To avoid biasing, they were selected from a plot of record
numbers rather than a plot of depths or depth contours.
Additional points for more detail and accuracy were chosen
for subsequent runs maintaining even spacing as much as
possible without considering any factor except the hori-
zontal distribution., The results of this procedure are
presented in Table IX. The RMS differences were improved
significantly when the number of model points was increased
from 53 to 110 but the maximum positive differences were
not improved., Additional densification of the model points
produced little improvement in either the RMS differences

or the maximum differences.

2. Iterative Selection

In the iterative selection process, the results
of one model were used to eliminate some model points and
select additional ones to produce a better model. After

developing the model with the first set of points, the

comparison of survey data points with the model was analyzed.

Additional model points were selected wherever single

point comparisons showed the largest differences or in areas
where several points showed relatively large differences

of the same sign. Model points which had very small asso-
ciated coefficients were eliminated. A small coefficient
indicates that the associated basis function has little
effect on the model since it remains near zero within the
modeled area., The model was then computed with the new set

of points.
75
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TABLE IX - Selection of llodel Points with Even Spacing

Number Maximum Maximum Number
of model RMS positive negative of data
points NPPR difference difference difference points
o b 0 2.04 9.52 -5.64 1407
53 1 2.00 9.45 -5.78 1407
53 5 1.9 8,92 -6.39 1407
53 10 1,90 8,61 -7.03 1407
53 15 1.91 8.68 -7.66 1407
53 20 1.93 8.68 -8.10 1407
110 0 137 9.84 -4.,25 1407
110 1 1.27 9.95 -4.71 1407
110 2 1.30 10.04 -5.02 1407
110 D 1.26 10,45 -5.46 1407
110 T 1.26 20,19 -5.60 1407
110 10 1+26 10.28 -5.76 1407
110 15 1.29 10.46 =5.97 1407
144 & 1.25 9.86 -4,26 1407
144 3 .25 9.95 -4,66 1407
144 9 1.13 10.07 -5.41 1407
144 7 1.41 10.07 -5.58 1407
144 10 1.10 10.06 -5.76 1407
144 15 1,41 10.10 -6,01 1407
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This procedure could be repeated until the desired
accuracy was attained, the maximum number of model points
to be used was reached, or the model accuracy no longer
improved with further iterations. For this comparison of
selection methods, the process was repeated until the number
of model points was approximately the same as the maximum
number used in the test of the regular spacing selection
method.

Table X shows the results of these tests., In all
tests, the best results were obtained when NPPR=0 (conic
kernels). Both RMS and maximum differences improved sig-
nificantly as the selection process was repeated. Two
iterations yielded approximately the same number of model
points as the maximum used in the regular spacing selection
method.

Points related to features such as peaks, deeps
or sharp changes in slope were chosen for the initial set
of model points in these comparisons. Regular spaced points
for the initial set were used in other tests with the
iterative method. The results were good for both methods
of initial selection. After a few iterations relatively
few points from the initial set remained so the initial
point selection method made little difference.

A comparison of model point selection by regular

spacing and by iteration is shown in Figure 16.
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TABLE X - Selection of Model Points by Iteration

Number Maximum Maximum Number

of model RMS positive negative of data

points NPPR difference difference difference points
82 0 1.48 4.33 -5.52 1407
82 s 3..56 3.85 -5.50 1407
32 9 2,36 8.09 -9.43 1407
107 0 1.06 3.04 -3,29 1407
107 1 1.15 2.8L =3.32 1407
152 0 Q.72 = 85 ) -2.58 1407
152 1 8 Py i 265 =2.72 1407
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3. Complete Selection by Topographic Feature

While using the iterative selection process, it
was found that the additional points were selected where
there were significant changes of slope or where there
were large areas without any model points. This led to
an attempt to select all the model points in one step
based on the following criteria.

e Select points at peaks, deeps, ridges and where
slopes change significantly.

® Select points to avoid leaving any large areas
without model points as a result of the first
criterion.

A test was done by choosing 145 points to model
only half of the Auke RBay data set., The RMS difference
was 0.88 and the maximum difference was =3,22., These
results show that one-shot selection is not nearly as
good as the iterative method and probabvly not much bvetter

than the regular spacing method.

4. Summary

The iterative selection method gave by far the
best statistical results. It also required the most com=-
puter time. It would be adaptable to complete automation
since the method for point selection has little subjectivity

involved.



The regular spacing method would be easier to auto-~
mate but it doesn't give good results when detail is
required. The method of complete selection by feature
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